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Iterative Method for Nonlinear FM Synthesis of
Radar Signals

The problem of synthesizing a time-domain signal with a given

energy spectral density (ESD) often arises in the field of signal

processing. Many solutions have been proposed and successfully

used over the years. However the problem of synthesizing a

time-domain signal with constraints for a given ESD has not

been investigated sufficiently. We propose a solution to one

such constraint where the amplitude of the complex-valued

time-domain signal is required to be unity. This is equivalent

to phase modulating a unit amplitude signal, such that its

ESD matches a desired energy spectral density. We provide

an algorithm for this solution and apply it to a real problem

encountered in radars.

I. INTRODUCTION

In signal processing the energy spectral density
(ESD) is the distribution of energy with frequency.
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For an M-point complex discrete-time signal a(n),
n= 0,1, : : : ,M ¡ 1, the N-point ESD E(k), k =
0,1, : : : ,N ¡ 1 is given by the square of the magnitude
of the N-point discrete Fourier transform (DFT)
A(k),k = 0,1, : : : ,N ¡1 of the discrete-time signal a(n)

A(k) =
M¡1X
n=0

a(n)exp(¡j2¼kn=N), k = 0,1, : : : ,N ¡ 1

(1)
as

E(k) = jA(k)j2:
If we have the ESD, it is possible to compute
the discrete-time signal using the inverse Fourier
transform and some window-function techniques,
such as a rectangular window, a hanning window, a
hamming window, a Blackman window, etc.

ã(n) =
1
N

N¡1X
k=0

p
E(k)exp(j2¼kn=N), n= 0,1, : : : ,N ¡ 1

a(n) = ã(n)w(n)

where ã(n) is an N-point discrete-time signal and
where w(n) is an N-point window that reduces ã(n)
to M non-zero points.
This problem of synthesizing a time-domain

signal from its ESD often arises in the field of signal
processing. For example when a signal has to be
transmitted through a noisy medium, the optimal
signal to transmit should have its energy in the
noise bands with minimum power. In such cases
the transmit signal may have to be synthesized to
have a given ESD. This problem can be interpreted
as designing a filter with a given ESD. Providing
an impulse excitation to the filter generates the
desired signal. Many techniques have been developed
over the years to address this problem [1]. The
computed filter coefficients are not always practically
realizable for a variety of reasons. This quite often
imposes constraints on the filter coefficients. Specific
techniques need to be developed based on the
particular constraints in the problem. One such
constraint that has not been extensively investigated
is the constraint for the amplitude of the filter
coefficients. For example in radar the detection
performance of the radar depends upon the ESD
of the transmitted signal. A common practice is to
use class C amplifiers, where the amplitude of the
transmitted signal cannot be varied, and so, only phase
or frequency modulation can be used. This is called
angle modulation. When the modulation signal is
nonlinear, the resulting signal is called a nonlinear
frequency modulation (FM) signal [7]. In such a
case if a transmit signal has to be synthesized for a
given ESD, the only part of the signal that can be
manipulated is the phase of the signal. The simplest
way to do this would be to synthesize the signal
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without any constraint and then to force the amplitude
of the signal to be unity as

a(n) = F¡1
np

ED(k)
o

and aR(n) =
a(n)
ja(n)j ,

n= 0,1, : : : ,M ¡ 1
where ED(k), k = 0,1, : : : ,N ¡ 1 are N-sample points
of the desired ESD, aR(n) is the final synthesized
signal, and where F¡1 represents the inverse Fourier
transform. However the ESD of the signal synthesized
using this procedure may be drastically different from
the given ESD. More sophisticated techniques are,
therefore, needed to synthesize a signal that meets all
the requirements. A standard technique commonly
used for synthesizing a nonlinear FM signal is the
stationary-phase technique [2]. The principle of
stationary phase relies on the simple fact that most of
the energy of a complex signal is concentrated around
what are called stationary points. It can be explained
in relation to the problem at hand as follows. Suppose
that

u(t) = exp[jμ(t)]

is a complex unit amplitude frequency modulated
signal with instantaneous frequency

³(t) = μ0(t):

The Fourier transform of this signal is given by

U(!) =
Z 1

¡1
exp[j(¡!t+ μ(t))]dt:

The presence of an imaginary exponential makes
the above function an oscillating function. A major
contribution to the Fourier spectrum occurs when the
rate of change of oscillation is minimal. The point
(t0,!0) that satisfies the condition

d

dt
[!t¡ μ(t)] = 0

is called the stationary point. Using the above
result, and, with further assumption that ³(t) is
monotonically increasing, it is possible to find a
function μ(t) such that u(t) has the desired ESD. In
Section III we provide the performance results of
this technique as a comparison with our proposed
technique. In [3] a technique is proposed whereby
the error between the desired ESD and the ESD of
the realized signal is minimized using the method
of Lagrangian multipliers. This technique involves
complex analytical derivations followed by computing
a numerical solution using Newton’s method.
Some other methods are proposed in [4] and [5].
In this paper we propose an algorithm that is not
necessarily optimal but is fairly simple, with less
computations for real-time on-line processing,

and it appears to produce a reasonably good
solution.

II. PROBLEM STATEMENT AND PROPOSED
SOLUTION

Given a desired ESD ED(k), k = 0,1, : : : ,N ¡1,
corresponding to N uniformly-spaced real DFT
samples around the unit circle in the z-plane, we
wish to approximate the desired magnitude spectrum
S(k)(=

pED(k)) by the magnitude of the DFT A(k)
for an M-point unit-amplitude complex signal
given by

a(n) = exp(jμn), n= 0,1, : : : ,M ¡ 1: (2)

If M <N, a(n) is zero-padded to N samples. Let A(k)
be the DFT of a(n) given by (1). We wish to choose
unit amplitude complex signal a(n), such that the
magnitude spectrum jA(k)j of the signal is closest to
the desired magnitude spectrum. This can be achieved
by minimizing the following least squares error

J(μ) =
N¡1X
k=0

[S(k)¡ jA(k)j]2

where μ = [μ1μ2 ¢ ¢ ¢μM]T. However to improve the
approximation of the desired ESD, we associate the
phase of A(k) with the desired magnitude spectrum
S(k). If Á(k) is the phase of A(k), then the least
squares error can be rewritten as

J(μ) =
N¡1X
k=0

jS(k)ejÁ(k)¡A(k)j2:

Let x= [S(0)ejÁ(0) S(1)ejÁ(1) ¢ ¢ ¢S(N ¡ 1)ejÁ(N¡1)]T,
a= [a(0) a(1) ¢ ¢ ¢a(M ¡ 1)]T, and A= [A(0) A(1) ¢ ¢ ¢
A(N ¡ 1)]T. Let W be an N £M DFT matrix defined
as

W=
1p
N

266664
!0¢0 !0¢1 ¢ ¢ ¢ !0¢(M¡1)

!1¢0 !1¢1 ¢ ¢ ¢ !1¢(M¡1)

...
...

. . .
...

!(N¡1)¢0 !(N¡1)¢1 ¢ ¢ ¢ !(N¡1)¢(M¡1)

377775
so that A=Wa where ! = e¡j(2¼=N). The least squares
error can be expressed in vector form as

J(μ) = (x¡Wa)H(x¡Wa)
where the exponent H stands for Hermitian (conjugate
transpose). This problem can be interpreted as
estimating the vector a based on observed values x.
Note that this is a nonlinear least squares problem
because of the nonlinear dependence of a on μ (see
(2)). The linear least squares estimator of a is given
by [6]

â= (WHW)¡1WHx:
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Fig. 1. Optimal transmit ESD computed in [8].

Since W is an N £M DFT matrix, which has
orthogonal columns

(WHW)¡1 = (1=N)IM

where IM is the M £M identity matrix. The
expression for the least squares estimator reduces to

â= (1=N)WHx: (3)

Since the vector x depends on the phase Á(k) of the
DFT of the signal, which in turn depends on the
signal, the solution must be solved for iteratively. To
describe the ith stage of the iterative algorithm, let
â(i) be the linear least squares estimate of the signal
given by (3), let Â(i) be the N £ 1 column vector
of corresponding DFT values, and let x(i¡1) be the
N £ 1 vector of the magnitude spectrum values S(k)
associated with the corresponding phase Á̂(i¡1)(k), of
Â(i¡1)(k) from the previous iteration. The least squares
estimate for the ith iteration is given by

â(i) = (1=N)WHx(i¡1) (4)

where x(i¡1) = [S(0)ejÁ̂
(i¡1)(0) S(1)ejÁ̂

(i¡1)(1) ¢ ¢ ¢
S(N ¡ 1)ejÁ̂(i¡1)(N¡1)]T. The criterion for convergence
can be based on the norm of the variation, which is
defined as

¢=
M¡1X
n=0

jâ(i)(n)¡ â(i¡1)(n)j

where â(i)(n), n= 0,1, : : : ,M ¡ 1 is the least squares
estimate in the ith iteration and where â(i¡1)(n),
n= 0,1, : : : ,M ¡ 1 is the least squares estimate in the
(i¡ 1)th iteration.
The steps to compute the filter coefficients can be

summarized as follows.

1) Let Á̂(0)(k) = 0 for k = 0,1, : : : ,N ¡ 1. Compute
x(0) = [S(0)ejÁ̂

(0)(0) S(1)ejÁ̂
(0)(1) ¢ ¢ ¢S(N ¡ 1)ejÁ̂(0)(N¡1)]T.

2) Compute â(1) using (4).

3) Compute ¯̂a
(1)
, the filter coefficients with unit

amplitude, from â(1) by dividing each coefficient by its
amplitude to produce normalized coefficients.

4) Compute
¯̂
A
(1)

, the DFT of the normalized filter

coefficients, using
¯̂
A
(1)

=W ¯̂a
(1)
.

5) Compute the phase Á̂(1)(k), of
¯̂
A
(1)

for next
iteration. Go to step 1.

III. SOME EXAMPLES

A. Synthesizing a Transmit Signal for a Radar from the
Optimal Transmit ESD

Consider the problem of synthesizing an optimal
transmit signal for a radar in the presence of noise and
clutter. In [8] the ambient noise is modeled as a wide
sense stationary (WSS) Gaussian random process
with zero mean and power spectral density (PSD)
Pn(f). The clutter return is modeled as the output of a
random linear time-invariant (LTI) filter with impulse
response that is a complex WSS Gaussian random
process, with zero mean and PSD Ph(f). It is shown
that the ESD of the optimal transmit signal is given by

Es(f) = max
Ãp

Pn(f)=¸¡Pn(f)
Ph(f)

,0

!
where ¸ is a positive number. For a particular case
the optimal ESD is computed at 5001 (N = 5001)
frequency points, and it is plotted in Fig. 1.
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Fig. 2. Desired ESD and computed ESD for signal synthesized with simple technique with M = 200.

Fig. 3. Desired ESD and ESD of signal synthesized using stationary-phase technique with M = 200.

In the paper Durbin’s method is used to synthesize
the signal corresponding to this ESD. There is no
constraint imposed on the coefficients of the signal.
A simple way to synthesize a signal with this ESD,
which satisfies the constraint of unit amplitude
coefficients, is to compute the inverse DFT of the
square root of the desired ESD, to window it to the
required number of samples, and then to impose
the constraint of unit amplitude on the resulting
coefficients. Fig. 2 shows the ESD of a signal
synthesized using this method, with M = 200, along
with the desired ESD. The drastic difference between
the ESD of the synthesized signal and the desired
ESD can be clearly noticed. Fig. 3 has the ESD

of a signal synthesized using the stationary-phase
technique for the same value of M = 200.
We use the same ESD to generate a signal using

our algorithm, with M = 200. The algorithm is iterated
until ¢< 0:01£M(= 2), and it converges in 35
iterations. Additionally the algorithm is run for values
of M = 10,50 and 100, and it converges in 17, 18, and
25 iterations, respectively. Fig. 4 shows the computed
ESD along with the desired ESD for M = 200. For
a filter with filter coefficients designed using this
algorithm, the average attenuation in the stopband
is about 15.4523 dB below the average attenuation
in the passband. This can be compared against the
average attenuation difference between passband

CORRESPONDENCE 913



Fig. 4. Desired ESD and ESD of signal synthesized using proposed technique with M = 200.

Fig. 5. Desired normalized cumulative ESD and normalized cumulative ESD of signal synthesized using simple, stationary-phase and
proposed techniques with M = 200.

and stopband for the stationary-phase technique,
which is 7.7731 dB. This is quite good for many
practical applications. The closeness of the ESD of
the signal synthesized using the proposed technique to
the desired ESD can be visualized better by looking
at the plots of the normalized cumulative ESDs in
Fig. 5. This can be compared against the cumulative
ESD of the signal synthesized using the simple and
stationary-phase techniques. Normalized cumulative
ESD is defined as

Ê(k) =
Pk
i=0E(i)PN¡1
i=0 E(i)

, k = 0, : : : ,N ¡1

Fig. 6 has the zoomed version of the section
highlighted in a box in Fig. 5. It can be seen
clearly in Fig. 6 that the stationary phase technique
smooths out around the edges, while the proposed
technique follows the desired cumulative ESD very
closely, even at the edges. This means that when
the desired ESD has a large number of sudden
fluctuations, the proposed technique outperforms
the stationary phase technique. The sections where
the desired cumulative ESD is flat represent the
stop band. The flatter the cumulative ESD, the
higher the attenuation in the stopband. It is easy
to notice that the proposed technique has much
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Fig. 6. Desired normalized cumulative ESD and normalized cumulative ESD of signal synthesized using simple, stationary-phase and
proposed techniques with M = 200.

Fig. 7. Amplitude and phase of synthesized complex signal.

flatter cumulative ESD when compared with the
stationary phase technique. A rudimentary comparison
of the computation time revealed that all of this
gain in performance is obtained with the proposed
technique only at a cost of twice the computation
time over the stationary phase technique. Fig. 7 has
the amplitude and phase plots of the synthesized
signal. It can be clearly seen that the amplitude of
the synthesized signal is unity. Fig. 8 shows the
norm of the variation of ¯̂a between iterations as a
function of the iteration number. It can be seen that
this value decreases very rapidly, which implies

that the algorithm converges to a solution very
quickly.
Higher values of M provide more flexibility to

the algorithm by increasing the degrees of freedom.
However after the algorithm is provided with
sufficient degrees of freedom to synthesize a certain
ESD, increasing the value of M any further does
not necessarily improve the performance of the
algorithm. We ran the algorithm for different values
of M. It was observed that the synthesized ESD
gets closer to the desired ESD as M increases, as
expected. But the improvement is not significant
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Fig. 8. Norm of variation of ¯̂a between iterations.

Fig. 9. Desired normalized cumulative ESD and normalized cumulative ESD of signal synthesized using proposed technique for
different values of M .

after a certain value of M . This can be seen from the
cumulative ESD plots in Fig. 9, where a section of
the cumulative ESD of the desired signal is plotted
along with the cumulative ESDs of the signals
synthesized using the proposed technique for values
of M = 10, 50, 100, and 200. The improvement is
very prominent when M is increased from 10 to 50
and 50 to 100, but when M is increased from 100
to 200, we do not notice any further improvement.
However it is important that M be less than N
in order for the algorithm to converge to a good
solution.

IV. CONCLUSIONS

We proposed a technique to synthesize a signal
that has an ESD closest to a given ESD and that
satisfies the condition that all the coefficients
of the signal have unit amplitude. We give an
iterative algorithm to solve this problem and
show that this algorithm appears to converge
to a reasonably good solution. An example is
provided to show that the algorithm converges for
a desired ESD used in radar for clutter suppression
[8].
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Far-Field Limit of PFA for SAR Moving Target
Imaging

A new formulation of the polar format algorithm (PFA) for

spotlight synthetic aperture radar (SAR) imaging is presented,

which is useful when investigating its response to the moving

target. Our work starts with examining the commonly adopted

implementation of the PFA, i.e., the separable 1-D range and

azimuth resampling procedures for their roles in range cell

migration (RCM) correction, respectively. It is shown that the

former performs RCM predeformation, while the latter is,

substantially, the combination of RCM linearization and the

keystone transform (KT), i.e., a well-known technique for SAR

imaging of moving targets. The new formulation approach is

applied to analyze the moving target. The far-field limit of the

PFA for moving target focusing is derived, which can be used to

predict the target’s impulse response (IPR) function. The work

presented might be helpful when considering a SAR system with

the capability of ground moving target indication and imaging

(GMTI&Im).

I. INTRODUCTION

The polar format algorithm (PFA) is well
established in fine resolution spotlight synthetic
aperture radar (SAR) processing. The classical
theory of radar imaging formulates the algorithm by
indicating an intrinsic but simple Fourier transform
relationship between the complex reflectivity of the
illuminated scene and the collected data [4—7]. In
practice the 2-D resampling of the data samples is
prerequisite to exploiting the efficiency of the fast
Fourier transform (FFT), and the commonly adopted
implementation of which is the separable 1-D range
and azimuth resampling.
The derivation of the PFA can be found in [4]—[7],

and [11]. They are adequate to clarify the 2-D Fourier
transform relationship and, meanwhile, to derive
the far-field limit. Nevertheless the mechanism
of range cell migration (RCM) correction in the
PFA has not been illuminated explicitly in these
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